
Chapter 27

Darshan

Philip Carns

Argonne National Laboratory

27.1 Features . 311
27.2 Success Stories . 313
27.3 Conclusion . 315

Bibliography . 316

Darshan is an application-level I/O characterization tool that captures
production-level I/O behavior with minimal overhead. Darshan does not
record a complete trace of all I/O system calls. It instead gathers compact ac-
cess pattern statistics for each file opened by the application. These statistics
are reduced, compressed, and aggregated into a single log file that summarizes
the I/O activity and access patterns of the application as a whole. Although
this summary data does not offer the same fidelity as a traditional tracing or
profiling tool, it can be collected with negligible overhead and no source code
modification. This combination of features makes it possible not only to in-
strument full-scale application runs, but also to transparently deploy Darshan
for the automatic characterization of all production jobs on a leadership-class
HPC system. Darshan characterization data can be used for a variety of pur-
poses ranging from performance tuning of specific applications [6, 7, 8] to
analysis of trends in system-wide I/O behavior [1, 2].

Although Darshan is designed for system-wide deployment, it can also be
installed and used by individual end-users as well. The runtime component
of Darshan consists of a set of user-space libraries and compiler wrappers
to simplify development environment integration. The command line utility
component of Darshan includes tools to interpret application logs and produce
graphical summaries for high-level analysis.

311

312 High Performance Parallel I/O

27.1 Features

The initial motivation for the Darshan project was to gain a better un-
derstanding of production I/O behavior by performing system-wide workload
studies. Previous system-wide workload studies [9] were very influential in
HPC I/O research but no longer reflected the scale, architecture, and scien-
tific application diversity of present-day systems. Collecting data on large-
scale present-day systems required the development of efficient, non-intrusive
instrumentation methods. This led directly to the following core design goals
for Darshan: transparent integration with the user environment and negligable
impact on application performance, and reliability.

Darshan operates in the user-space as an interposition library in order to
collect per-application statistics without source code modifications. As with
many other HPC profiling tools, Darshan leverages the MPI profiling interface
in conjunction with either link-time wrappers for statically linked executables
or preloaded libraries for dynamically linked executables. Static instrumen-
tation can be enabled system-wide using MPI compiler script functionality,
while dynamic instrumentation can be enabled system wide using environment
variables. End-users do not need to change their work flow in either case.

The Darshan function call wrappers intercept POSIX and MPI-IO func-
tions, as well as a few key HDF5 and PNetCDF functions. The wrappers are
used to gather information, such as operation counters (such as open, read,
write, stat, and mmap); datatypes and hint usage; access patterns in terms of
alignment; sequentiality; access size; and timing information including cumu-
lative I/O time and intervals of I/O activity. (A full description of counters
can be found in the Darshan documentation [5].) Darshan does not issue any
communication or storage operations to manage characterization data while
the application is running. Each process is instrumented independently using
a bounded amount of memory. When the application shuts down, the re-
sults are then aggregated, compressed, and stored persistently. Darshan uses
a combination of MPI reduction operations, collective I/O, and parallel Zlib
compression to reduce overhead and minimize log file size.

The command line utility component of Darshan includes tools to parse
and analyze log files produced by the runtime library. Figure 27.1 shows an
example of output produced by darshan-job-summary, a utility that sum-
marizes the I/O behavior of a job. This example was chosen from production
logs captured on the Mira IBM Blue Gene/Q system operated by the Argonne
Leadership Computing Facility (ALCF). The “I/O Operation Counts” graph
in the upper right corner indicates that the MPI-IO collective buffering opti-
mization [10] was enabled; there is a large discrepancy between the number
of MPI-IO collective write calls and the number of POSIX write calls. The
“Most Common Access Sizes” table confirms that the majority of the POSIX
write operations were 16 MB in size, which corresponds to the collective buffer

314 High Performance Parallel I/O

report for initial diagnosis. This often eliminates the need for additional pro-
filing runs (costly in CPU time) or manual source code inspection (costly in
manpower).

Historic collections of Darshan characterization data can also be used to
study trends in system usage as well, as illustrated in this section with example
data collected on the ALCF Intrepid Blue Gene/P system. Intrepid is a 557-
teraflop system containing 163,840 compute cores, 80 TB of RAM, and 7.6
PB of storage. More information about Intrepid and its I/O subsystem can be
found in Chapter 4. Darshan has been used to automatically instrument MPI
applications on Intrepid since January 2010. In this case study, five months
of Darshan log files are analyzed from January 1, 2013 to May 30, 2013.
Darshan instrumented 13,613 production jobs from 117 unique users over this
time period.

0

500

1000

1500

2000

2500

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

9
8
3
0
4

1
3
1
0
7
2

1
6
3
8
4
0

M
il
li
o
n
s
 o

f
c
o
re

-h
o
u
rs

Partition size

Category: small jobs

(up to 4K procs)

28.5% of core-hours

Category: medium jobs

(up to 16K procs)

31% of core-hours

Category: large jobs

(up to 160K procs)

40.5% of core-hours

FIGURE 27.2: Histogram of the number of core-hours consumed by Darshan-
instrumented jobs in each partition size on Intrepid. The histogram bins are
further categorized into small, medium, and large sizes for subsequent analysis.

The jobs instrumented by Darshan in the first five months of 2013 ranged
in size from 1 process to 163,840 processes, offering an opportunity to ob-
serve how I/O behavior varies across application scales. Figure 27.2 shows a
histogram of the number of core-hours consumed by Darshan-instrumented
jobs in each of the 9 available partition sizes on Intrepid. The most popular
partition size in terms of core-hour consumption contains 32,768 cores. The
jobs can be split into three comparably sized, broader categories for further
analysis; however, 28.5% of all core hours were in partitions of size 4,096 cores
or smaller, 31% of all core hours were in partitions of size 8,192 or 16,384, and
40.5% of all core hours were in partitions of size 32,768 or larger.

Figure 27.3 shows the total amount of data read and written by jobs in each
partition size category. All three categories are dominated by write activity
with one notable exception: the small job size category is dominated by a single
climate application labeled as “Climate user A.” This application accounted

Darshan 315

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

❘✆✝✞ ❲✟✠✡✆ ❘✆✝✞ ❲✟✠✡✆ ❘✆✝✞ ❲✟✠✡✆

❚
☛☞
✌
✍
✎
✏
✑✏

●✟✝✒✓ ✡✟✔✕✖✝✡✆✞✗ ✘✄☎✙✚ ✛✠✜

❆✢✢ ✣✡✓✆✟✤

❈✢✠✦✝✡✆ ✔✤✆✟ ❆

▲✝✟✧✆ ★✣✩✤

✭✔✒ ✡✣ �✪✥✫ ✒✟✣✖✤✬
▼✆✞✠✔✦ ★✣✩✤

✭✔✒ ✡✣ �✪✫ ✒✟✣✖✤✬
❙✦✝✢✢ ★✣✩✤

✭✔✒ ✡✣ ✄✫ ✒✟✣✖✤✬

FIGURE 27.3: Total amount of data read and written by Darshan-
instrumented jobs in each partition size category on Intrepid.

for a total of 776.5 TB of read activity and 31.1 TB of write over the course of
the study by reading as much as 4.8 TB of NetCDF data in each job instance.
The other notable trend evident in Figure 27.3 is that smaller jobs accounted
for a larger fraction of the I/O usage on the system than larger jobs.

✵ ✮

✷✵ ✮

✹✵ ✮

✻✵ ✮

✽✵ ✮

✶✵✵ ✮

✯✰✱✲✲ ✳✴✸✺

✼✾✿ ❀✴ ✹❁ ✿❂✴❃✺❄

❅❇❉❊✾✰ ✳✴✸✺

✼✾✿ ❀✴ ✶✻❁ ✿❂✴❃✺❄

❋✱❂❍❇ ✳✴✸✺

✼✾✿ ❀✴ ✶✻✵❁ ✿❂✴❃✺❄

P
■
❏❑
■
◆
❖◗
❯
■
❱
❳
❑
❱
❏■
❨❩
❱
❬
❏❭
❪◆
❫❱
❴
❭
❪❵
■
❑
◗
❖■
❯
❱
❏❛

❜✺❇❉ ✱❀ ✲❇✱✺❀ ✶ ❝❊✲❇ ✿❇❂ ✿❂✴❃❇✺✺
❜✺❇❉❅❞❡❢❡❣

FIGURE 27.4: Prevalence of key I/O characteristics in each partition size
category on Intrepid.

Figure 27.4 illustrates the prevalence of two key I/O characteristics across
job size categories. The first is file-per-process file usage. A job was defined
as having a file-per-process access pattern if it opened at least N files during
execution, where N is the number of MPI processes. Such jobs account for
31% of all core hours in the small job size category, but they do not appear
at all in the large job size category. Another job was defined as using MPI-
IO if it opened at least one file using MPI File open(). In contrast to the
file-per-process usage pattern, MPI-IO usage increases with job scale, going
from 50% for small jobs up to 96% for large jobs. The decline in file-per-
process access patterns and the increase in MPI-IO usage suggest that large-
scale applications are using more advanced I/O strategies in order to scale
effectively and simplify data management.

316 High Performance Parallel I/O

27.3 Conclusion

The Darshan I/O characterization tool has demonstrated that it is possible
to instrument leadership-class production applications with negligible over-
head. Since its initial development in 2009 [4], it has been in production on
multiple large-scale HPC systems, including the IBM Blue Gene/P systems,
IBM Blue Gene/Q systems, and Cray XE6 systems. Darshan enables both
targeted investigation of key applications, as well as broad system studies.
Key challenges for the future are to further expand the scope of such instru-
mentation without compromising efficiency and to develop more sophisticated
tools to leverage data produced by Darshan.

Bibliography

[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and Improving Computational Science Storage
Access Through Continuous Characterization. ACM Transactions on
Storage (TOS), 7(3):8, 2011.

[2] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, and K. Antypas. Pro-
duction I/O Characterization on the Cray XE6. In Proceedings of the
Cray User Group meeting 2013 (CUG 2013), 2013.

[3] Philip Carns. ALCF I/O Data Repository. Technical report, Argonne
National Laboratory (ANL), 2013.

[4] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,
and Katherine Riley. 24/7 Characterization of Petascale I/O Workloads.
In Proceedings of 2009 Workshop on Interfaces and Architectures for Sci-
entific Data Storage, September 2009.

[5] Darshan Documentation. http://www.mcs.anl.gov/research/

projects/darshan/documentation/, 2013.

[6] Jing Fu, Misun Min, R. Latham, and C.D. Carothers. Parallel I/O Per-
formance for Application-Level Checkpointing on the Blue Gene/P Sys-
tem. In The wrokshop on Interfaces and Abstractions for Scientific Data
Storage (IASDS) in conjunction with the 2011 IEEE International Con-
ference on Cluster Computing, pages 465–473, 2011.

[7] Rob Latham, Chris Daley, Wei-keng Liao, Kui Gao, Rob Ross, Anshu
Dubey, and Alok Choudhary. A Case Study for Scientific I/O: Improving

Darshan 317

the FLASH Astrophysics Code. Computational Science & Discovery,
5(1):015001, 2012.

[8] Ning Liu, Jing Fu, Christopher D. Carothers, Onkar Sahni, Kenneth E.
Jansen, and Mark S. Shephard. Massively Parallel I/O for Partitioned
Solver Systems. Parallel Processing Letters, 20(04):377–395, 2010.

[9] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter
Ellis, and Michael Best. File-Access Characteristics of Parallel Scien-
tific Workloads. IEEE Transactions on Parallel and Distributed Systems,
7(10):1075–1089, October 1996.

[10] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and
Collective I/O in ROMIO. In The Seventh Symposium on the Frontiers
of Massively Parallel Computation, pages 182–189. IEEE, 1999.

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.Please make sure you have the DOE acknowledgment at the end of your paper (before the References).For acknowledgment information, please use: This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357.

jbullock
Typewritten Text

